
while Loop, new operators



Learning Objectives

• Understand the principle of iteration in a program
• Write while loops
• Write variations of while loop: counter, sentinel and 

state controlled loops
• Use additional operators to write concise expressions
• Revisit order of precedence

CIS 151 - Simple Loops 2



Iteration (loop) basics

• Many activities are done repeatedly
• For example, consider calculating your GPA
• You have 6 grades from which a GPA has to be 

calculated
• How about 50 students, each with 6 grades
• The task becomes tedious and time consuming
• We can use loops to make the calculation process 

much more efficient and the code more compact

CIS 151 - Simple Loops 3



Iteration (loop) basics

• We can solve the problem the following way 
so long there is another student in a list

read the grades
add grades to an accumulator 
calculate the grade point average

• Three tasks are repeated for each student in the list
• This logic is easily modeled using a while loop

CIS 151 - Simple Loops 4



while loop
while (loop-continuation-condition) {

statement(s);  // Loop body
}

• Loop-continuation-condition is tested for every iteration 
of the loop
– Condition is same as discussed in the decision making section 

(test condition or conditional expression)
– Condition is evaluated to true or false
– Iteration is repeated if the condition is true
– The while loop can be stated as ‘while condition is true, perform 

statement(s)’

CIS 151 - Simple Loops 5



while loop

while (conditional expression) {
statement(s);

}

CIS 151 - Simple Loops 6

Condition?

statement(s)

truefalse



while loop

• For the loop to execute at least once, loop-
continuation-condition must be true to start with

• The condition must become false for the loop to stop
– Otherwise it is an Infinite Loop

• Condition is tested once for each iteration of the loop 

CIS 151 - Simple Loops 7



while loop – counting example

int sum = 0;
int number = 5;
while (number > 3) {

sum = sum + number;
number = number - 1;

}
System.out.println(“ Sum = ” + sum);

CIS 151 - Simple Loops 8



A FEW OPERATORS

• Java provides a number of other operators
• The following slides discuss these operators before revisiting while 
loop.

CIS 151 - Simple Loops 9



++ operator
• ++ is an increment operator
• -- is a decrement operator
• Both ++ and – are Unary operators – one operand only
• Most commonly used with integers
• 1 is added or subtracted to the variable
• Java allows use with floating-point type – adds or subtracts 

1
• Example:   

int num = 100;
num++; // num = 101
num--; // num = 100

CIS 151 - Simple Loops 10



++ operator
• Both ++  and -- can be placed before a variable

– Postfix when used after the variable
– Prefix when used before the variable

• Called preincrement or  predecrement
• Example:   

int num = 100;
++num; // num = 101
++num; // num = 102
--num; // num = 101
--num; // num = 100
--num; // num = 99

CIS 151 - Simple Loops 11



++ operator
• Both increments and decrement (++  and --) can be used in an 

expression
• Example:   increment

int num = 10;
int newNum = 10 * num++;
// ++ is postfix increment
// newNum = 10 * 10;  num = 11

• When used as increment or decrement (postfix), the value of 
variable is used first before increment or decrement

CIS 151 - Simple Loops 12



++ operator
• Both preincrements and predecrement (prefix) can also be 

used in an expression
• Example:   preincrement

int num = 10;
int newNum = 10 * ++num;
// ++ is prefix increment
// newNum = 10 * 11;  num = 11

• When used as preincrement or predecrement (prefix), the value 
of variable is increased or decreased first before being used in 
the expression 

CIS 151 - Simple Loops 13



++ operator
Another Example:   

int count = 0, result = 0, firstNum = 10;
count++; // count is now 1
result = count++ * --firstNum + 10;

⇒result = 1 * 9 + 10
⇒result = 9 + 10 
result = 19 count = 2 firstNum = 9
• Order of operations:   ++ -- (Unary operators are 

Right to left) 

CIS 151 - Simple Loops 14



++ operator

Yet another example:   
double x = 1.0;
double y = 5.0;
double z = x-- + (++y)

Result:
z = 1 + 6 => 7
x = 0
y = 6    

CIS 151 - Simple Loops 15



Compound Arithmetic Operators

CIS 151 - Simple Loops 16

Operator Operation Example

+= Addition answer += 2;

- = Subtraction answer - = 2;

* = Multiplication answer *= 2;

/= Division answer /= 2;

%= Modulus answer %= 2;



Order of Operation

CIS 151 - Simple Loops 17

Category Operators Associativity

Unary +        - ++      -- Right

Multiplicative *       /        % Left

Additive + - Left

Relational <    >    <=     >= Left

Equality = =       != Left

Assignment =      *= /=   %=   +=   - = Right



BACK TO WHILE LOOP

.

CIS 151 - Simple Loops 18



Sentinel-Controlled while loop

• Used when a loop reads data from the console or a 
file
– The number of data items to be read is unknown

• The program can rely on a sentinel – a last known 
value to stop the loop

• Sentinel value is an extreme value, or a dummy value
• Sentinel value should not be a legitimate or expected 

data
• Sentinel value should not be processed

CIS 151 - Simple Loops 19



Sentinel-Controlled while loop
import java.util.Scanner;
public class LoopTester {

public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int myData = 0;
int count = 0;
while (myData != -99) {

System.out.println("Enter a number, -99 to stop");
count++;
myData = in.nextInt();

}
System.out.println("Iteration count = "+ count);

}
}

CIS 151 - Simple Loops 20

Sentinel value

This code has one problem, it iterates at least once
The reported value of count is off by one



Sentinel-Controlled (improved)
import java.util.Scanner;
public class LoopTester {

public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int myData = 0;
int count = 0;
System.out.println("Enter a number, -99 to stop");
myData = in.nextInt();
while (myData != -99) {

System.out.println("Enter a number, -99 to stop");
count++;
myData = in.nextInt();

}
System.out.println("Iteration count = "+ count);

}
}

CIS 151 - Simple Loops 21

Priming Read

In sync with iterations



State-Controlled while Loop
• State controlled loops are a variation of Sentinel-

controlled loop
• The sentinel is replaced by a boolean flag variable

boolean moreData = true;
while (moreData) {

statement;
statement;
if (someCondition) {

moreData = false;
}

}

CIS 151 - Simple Loops 22

Key requirement 
to stop the loop


	Iteration
	Learning Objectives
	Iteration (loop) basics
	Iteration (loop) basics
	while loop
	while loop
	while loop
	while loop – counting example
	A few Operators
	++ operator
	++ operator
	++ operator
	++ operator
	++ operator
	++ operator
	Compound Arithmetic Operators
	Order of Operation
	Back to while loop
	Sentinel-Controlled while loop
	Sentinel-Controlled while loop
	Sentinel-Controlled (improved)
	State-Controlled while Loop

